y

OpenGL:
Advanced 3D

Session 513




y

OpenGL:
Advanced 3D

Geoff Stahl
Apple OpenGL

Simon Green
NVIDIA



Overview

*What’s new with Jaguar?
* Woltman Walkthrough
° Q&A




New Features

* Optimizations
* glReadPixels
e glCopyTexSubimage
* glDrawPixels
» Display Lists
 Image Processing
o Vertex Arrays

* Surface to Texture
® Extensions

« 04 extensions supported
» 30 new extensions




Programmability

¢® ARB_vertex_program

» Adds vertex programming functionality to all
software and hardware implementations

» Support in hardware for ATI Radeon 8500,
NVIDIA GeForce 3 and GeForce 4 Ti

» All other hardware supported via an
optimized software implementation

® NV_texture_shader, NV_texture_shader2,
NV_texture_shader3

¢ ATI_fragment_program




Vertex Array

¢® APPLE_vertex_array_range
» Allows GPU to DMA vertex arrays
» Supported by ATI Radeon, ATI Radeon 8500,

all

NVIDIA. Requires hardware TCL

¢® APPLE_vertex_array_object

« Allows vertex array state such as data pointers
and vertex array range information, similar

to .

now textures are handled

 SU|
all

oported by ATI Radeon, ATI Radeon 8500,
NVIDIA




Performance

¢® APPLE_texture_range

» Allows texture storage hints and specification
of memory range for texture data

» Supported by ATI Radeon, ATI Radeon 8500,
all NVIDIA

® APPLE_fence

» Puts a fence (or token) in command stream
to allow synchronization

» All renderers supported




Texture Extensions

¢® ARB_texture_mirrored_repeat
® ARB_texture_env_crossbar

¢ ATI_texture_mirror_once

¢ SGIX_depth_texture

¢ SGIX_shadow




Rendering Extensions

¢* ARB_multisample

¢* EXT_secondary_color

¢* EXT_fog_coord

¢® EXT_draw_range_elements
¢* EXT_stencil_wrap

® NV_fog_distance

® NV_multisample_filter_hint

® NV_depth_clamp




Others

* Pixel Transfer

* ARB_imaging,
ATIl_blend_equation_separate,

ATIl_blend_weighted_minmax,
NV_blend_square

* Point Parameters
e ARB_point_parameters, NV_point_sprite




Anatomy
of the
Wolfman

Simon Green, NVIDIA

Advanced Fur Rendering Using
OpenGL Programmable Shading



NVIDIA Demo Team Unofticial Motto

“We Make The Marketing Lies Come True”




Overview

* Wolfman—one of four GeForce 4 launch demos

* Created to showcase the performance and
programmability of GeForce 4

* Demonstrates volumetric fur rendering on a fully
animated character model

* Animated using vertex shaders

* Per-pixel anisotropic lighting using pixel shaders
* Self-shadowing using shadows maps

* Runs using OpenGL with NVIDIA extensions

* How did we do it?




Why Fur?

* Lots of things in the real world are fuzzy
* Rendering fur is hard

* Fur is something people hadn’t seen
before in real time




Rendering Fur

* Two basic methods to render fur
« Geometric
o Each individual hair strand is a curve (lines)
o Volumetric

« Fur is represented using volume texture (images)

* Hardware can’t render 3 million individual hairs
per frame (yet)

* So we use the second method




A Brief History of Fur Rendering

Rendering Fur With Three Dimensional Textures
Kajiya and Kay, Siggraph 1989

* Represented fur density using 3D volume
texture —“‘texels”

* Lit hairs based on tangent direction

* Furry teddy bear image

* Rendered on network of IBM mainframes
» 16 processors

* 2 hours for one frame o







A Brief History of Fur Rendering

Real-Time Fur Over Arbitrary Surfaces
Jed Lengyel, Microsoft Research 2001

* Introduced concept of “shell and fin” rendering
* Concentric shells approximate volume

* “Fins” improve silhouette edges

* Used “lapped textures” to cover surface

* Furry bunny rabbit

* 5000 faces
*Ran at 12 frames per second on GeForce DDR

¢






Demo Concept

* Teddy Bears and Bunnies aren’t our style, so . . -







C
Demo

NVIDIA Wolfman



Wolfman Demo Statistics

* 100,000 polygons/frame
* Runs at around 30 frames/second




Rendering Fur
With Shells and Fins

* Generate concentric “shells’ by scaling base skin
mesh along vertex normal

* Each shell is textured with a different 2D texture
that represents a slice of the fur geometry

* The layers are blended together to produce
the illusion of a semi-transparent furry volume

* Lower layers are shaded darker to simulate
self-shadowing of fur

*We used 8 layers




1

(TR TR T IR ]
— =

Fur Design Too




Fur Design Tool

* Custom in-house tool
* Provides simple UI for designing fur textures

* Fur geometry is defined using a particle system
based on spherical coordinates

* Previews hairs using line strips

* Allows direction, curliness to be tweaked
using sliders

* Once you're happy, it renders (e.g., voxelizes)
the geometry into a volume texture

o Writes out texture files to disk




Fur Textures

* We used 256 x 256 pixel fur textures, tiled over
each surface

* Alpha component of texture represents
density of fur

* RGB components represent tangent vector
used for lighting




Fur Without Color Map




Fur Color Texture




Fur With Color and Lighting

b \
'\




Rendering Fur
With Shells and Fins

* Problem: fur using shells looks good, except
on the silhouette

* Solution: add “fin” geometry to improve the edges

* Fins are generated by creating a quadrangle for
each edge in the base mesh

* Textured with a separate image

* Fins are faded out based on the angle between the
normal and the view direction, so that they only
appear on the silhouette

¢



Fin Texture

* Hand painted, represents arbitrary cross section
through fur:

,-* F
-" e

// !/ ' ,_'// // / //%-:—;/..;:-’ '.-:;_ ' "' /
)
A f/fr:{ Y




=y

) e oy,
A5 "‘-"!';4"‘
a"é"\q":&ﬁth 470 g

=y v
AR

oy, g ri
am WAV
" --...'i\‘f'












Modeling and Animation

* Modeled in Maya as NURB surfaces
* Converted to polygons

® Base mes|

n has around 20,000 polygons total

e Skeleton |

» Including al

nas 61 |

DONCES

P

fingers and thumbs!

* Comparable to complexity used in film and
television production

* 925 frames of key-framed animation (@ 30fps




olfman in Maya 4.0




NVDemo—The NVIDIA Demo Engine

* Proprietary NVIDIA demo engine

* Used for most of NVIDIA’s in-house demos

* Object-oriented scene graph library

* Takes care of scene management, culling, sorting

* Includes Maya plug-in to convert geometry,
materials, lights and animation to our own
custom file format




Vertex Shaders

* Allow total control over hardware vertex
processing using assembly language interface

* Exposed in OpenGL as ARB_vertex_program
extension
* Used in Wolfman demo for:
» Skinned animation
» Scaling fur layers along vertex normal
» Setup for per-pixel lighting
» Texture coordinate generation for
shadow mapping




Vertex Program Extract

// Load the index

ARL AO0.x, Vv[V_INDEX].x;

// transform vertex by bone

DP4 RO.x, c[A0.x+ C_BONEO_X], v[V_COORD];
DP4 RO.y, c[A0.x+ C_BONEO_Y], v[V_COORD];
DP4 RO0.z, c[AO0.x+ C_BONEO_Z], v[V_COORD];
// multiply by weight

MUL Rv.xyz, RO, v[V_WEIGHT].x;

// transform normal by bone

DP3 RO0.x, c[AO0.x+ C_BONEO_X], v[V_NORMAL];
DP3 RO.y, c[AO0.x+ C_BONEO_Y], v[V_NORMAL];
DP3 RO0.z, c[A0.x+ C_BONEO_Z], v[V_NORMAL]J;
// multiply by weight

MUL Rn.xyz, RO, v[V_WEIGHT].x;

// repeat for each bone, plus binormals




Vertex Program Extract

// scale vertex along normal
MAD Rv.xyz, Rn, c[C_FUR_SHELL_SCALE].x, Rv;

// project vertex

DP4 o[HPOS].x, c[C_PROJECTION_X], Rv;
DP4 o[HPOS].y, c[C_PROJECTION_Y], Rv;
DP4 o[HPOS].z, c[C_PROJECTION_Z], Rv;
DP4 o[HPOS].w, c[C_PROJECTION_W], Rv;

// fur lighting

// calculate eye space view vector
DP3 Re.w, Ry, Ryv;

RSQ Re.w, Re.w;

MUL Re.xyz, Rv, Re.w;




Vertex Program Extract

// calculate eye space half-angle vector

ADD Rh, -Re, c[C_LIGHTO DIRECTION];
DP3 Rh.w, Rh, Rh;

RSQ Rh.w, Rh.w;
MUL Rh.xyz, Rh, Rh.w;

// transform half-angle into tangent space
DP3 RO.x, -Rt, Rh;

DP3 RO.y, -Rb, Rh;
DP3 RO0.z, Rn, Rh;

// map H into [0,1] and put into secondary color
MAD o[COL1].xyz, RO, c[C_CONSTANTS].y, c[C_CONSTANTS].y;

// put fur diffuse lighting with attenuation into primary color
DP3 RO, Rn, c[C_LIGHTO_DIRECTION];

MUL o[COLO].xyz, c[C_FUR_SHELL_SCALE].y, RO;




Skinning

* We want 2 smooth skin that covers the character and
deforms as it animates

* Storing all the vertices for each key frame would be
expensive

* Instead we animate a hierarchical skeleton, and use that
to deform the skin

* Transform each vertex by multiple transformations—one
for each of the nearby bones

* Final vertex position is a weighted average of the results
of each of these transformations

* Weights are stored with each vertex
* Debugging skinning code can be fun . .










Pixel Shaders

* Allow precise control over per-pixel operations

* Exposed in OpenGL as NV_texture_shader
and NV _register_combiners extensions

* Used in Wolfman demo for:
» Bump mapping (street and Wolfman’s skin)

» Anisotropic lighting model on fur
» Shadows




Shadows

* Everything in the demo is shadowed using
shadow maps

* Shadow maps are a two pass image-space technique
* Exposed via GL_ARB_shadow extension

* Advantages
» Performance is linear with complexity of scene
e Easy to implement
* Disadvantages
» Aliasing
» Shadow bias «




Shadow Map Algorithm

* Render scene from light’s point of view
* Copy depth information to “shadow map” texture
* Project shadow map texture back onto scene

* For each pixel, hardware compares depth in
shadow map with depth of pixel:

 Ifit’s less, there must be something between
us and the light shadowed

« Ifit’s roughly equal, point is visible from light

¢



Bump Map Pixel Shader Pseudo Code

// NV_register_combiner pseudo code for bump mapping

textureO: color map (alpha = shininess map)
texture1: bump map

texture2: Phong specular map

texture3: shadow map

primary: light direction (L)
secondary: half angle vector (H)

// diffuse lighting = N.L
reg0.rgb = primary . texture1
// calculate shadow factor

regl.alpha = texture3*(1.0 - factor) + factor;
// diffuse * color map
reg0.rgb = reg0 * texture0 €




Bump Map Pixel Shader Pseudo Code

// specular * shininess
reg0.alpha = texture2 * texture0.alpha

// shadowing
// diffuse*shadow_factor + specular*shadow
reg0.rgb = reg0*reg1.alpha + reg0.alpha*texture3

// fog
reg0.rgb = interp(reg0, fog_color, fog_factor);

// NV _texture_shader psuedo code
texture_2D();
texture_2D();

dot_product_texture_1D(tex1); // computes (N.H)*p
texture_2D();




Texture—Color Map

il !}'i
1
S }

.
s A
: ity




Texture—Shininess Map




Texture—Normal (Bump) Map




Final Resu

amn
il 9 han

vane B LT
asr At s




Future Work

* Fur dynamics

» Animate shell geometry independently
from model based on physical simulation

* Ray marching
» Blend layers inside pixel shader
» Produce illusion of depth without shells
» Reduces frame buffer blending
* Geometry-based fur
» Antialiasing and shadowing are hard




Summary

* Programmable Vertex and Pixel shaders allow
you to control the hardware

* Real-time and offline production rendering
are converging

* Programmable graphics hardware acceleration
is applicable not only to games, but 2D imaging,
video processing and user interfaces . . -

* Next generation hardware will be faster, and
even more programmable

* Start learning this stuff now!




Demo Credits

* Curtis Beeson, Joe Demers—Engine Code

* Daniel Hornick—Modelling and Texturing

* Jeff Bell—Character Animation

* Ken Kurita-Ditz—Sound Design

* Simon Green—Additional Code and Shaders
* Mark Daly—Producer




4
T
T
1Y
L
L 1 )
1§ 11
I. 111
.i"' '.|“|




References

* . Kajiya and T. Kay, Rendering fur with three
dimensional textures, SIGGRAPH Proceedings,
pp. 271-280, 1989

* Jerome Lengyel, Emil Praun, Adam Finkelstein, Hugues
Hoppe, Real-Time Fur over Arbitrary Surfaces, ACM
2001 Symposium on Interactive 3D Graphics

http://research.microsoft.com/~jedl/
http://developer.nvidia.com/view.asp?l0=nvidia_opengl_specs



Roadmap

514 OpenGL: Performance Room J
and Optimization Thur., 5:00pm
FF018 Graphics and Imaging Room J1

Fri., 5:00pm




Who to Contact

Simon Green
NVIDIA Demo Engineer

sgreen@nvidia.com

Sergio Mello
3D Graphics Technology Manager

sergio@apple.com

’

http:/developer.apple.com/wwdc2002/urls.html .



Sergio Mello
3D Graphics Technology Manager
Worldwide Developer Relations
sergio@apple.com

http://developer.apple.com/wwdc2002/urls.html



& WWDC2002



& WWDC2002



& WWDC2002



